cantor$11116$ - определение. Что такое cantor$11116$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое cantor$11116$ - определение

ALGORITHM FOR FACTORING POLYNOMIALS OVER FINITE FIELDS
Cantor-Zassenhaus; Cantor-Zassenhaus Algorithm; Cantor-Zassenhaus algorithm; Cantor–Zassenhaus

Cantor set         
  • Column capital with pattern evocative of the Cantor set, but expressed in binary rather than ternary. Engraving of Île de Philae from ''Description d'Égypte'' by Jean-Baptiste Prosper Jollois and Édouard Devilliers, Imprimerie Impériale, Paris, 1809-1828
  • Zoom in Cantor set. Each point in the set is represented here by a vertical line.
  • an image of the 2nd iteration of Cantor dust in two dimensions
  • an image of the 4th iteration of Cantor dust in two dimensions
  • an image of the 6th iteration of Cantor dust in two dimensions
  • 400px
  • [[Cantor cube]]s recursion progression towards Cantor dust
FRACTAL AND SET OF POINTS ON A LINE SEGMENT
CantorSet; Cantor Dust; Cantor dust; Cantor comb; Cantor's ternary set; Cantor Ternary Set; Cantor's fractal set; Cantor ternary set; Cantor Set; Cantor Comb; Cantor's dust; Cantor discontinuum; Cantor Discontinuum; Cantor's set; Cantor's discontinuum; Cantor's Discontinuum; Cantor sets
In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen SmithThe “Cantor set” was also discovered by Paul du Bois-Reymond (1831–1889).
Geoffrey Cantor         
BRITISH HISTORIAN
Geoffrey N. Cantor
Geoffrey N. Cantor (born 1943) is Emeritus Professor of the History and Philosophy of Science at the University of Leeds and Honorary Senior Research Associate at UCL Department of Science and Technology Studies at University College London.
Schröder–Bernstein theorem         
  • Cantor's first statement of the theorem (1887)<ref name="Cantor.1932"/>
THEOREM THAT, IF THERE EXIST INJECTIVE FUNCTIONS IN BOTH DIRECTIONS BETWEEN TWO SETS, THEN THERE EXISTS A BIJECTION BETWEEN THEM
Schroeder-Bernstein theorem; Cantor-Schroeder-Berntein theorem; Cantor-Berstein theorem; Cantor-Schroeder-Bernstein theorem; Cantor-Bernstein-Schroeder theorem; Cantor-Schroeder-Berstein theorem; Schröder-Bernstein Theorem; Schroder-Bernstein theorem; Schröder–Bernstein Theorem; Cantor–Bernstein–Schröder theorem; Cantor-Schröder-Bernstein theorem; Cantor-Bernstein-Schröder theorem; Schröder-Bernstein theorem; Cantor-Bernstein-Schroder theorem; Bernstein–Schroeder theorem; Cantor-Schroder-Bernstein theorem; Bernstein-Schroeder theorem; Schroeder–Bernstein theorem; Shroeder-Bernstein theorem; Shroeder–Bernstein theorem; Cantor Schroeder Bernstein Theorem; (Cantor–)Schröder–Bernstein theorem; Cantor–Schröder–Bernstein theorem; Cantor–Schroeder–Bernstein theorem; Cantor–Bernstein–Schroder theorem; Schroder-Bernstein Theorem; Schroder–Bernstein Theorem; Schroder–Bernstein theorem; Cantor–Bernstein–Schroeder theorem; (Cantor-)Schröder-Bernstein theorem
In set theory, the Schröder–Bernstein theorem states that, if there exist injective functions and between the sets and , then there exists a bijective function .

Википедия

Cantor–Zassenhaus algorithm

In computational algebra, the Cantor–Zassenhaus algorithm is a method for factoring polynomials over finite fields (also called Galois fields).

The algorithm consists mainly of exponentiation and polynomial GCD computations. It was invented by David G. Cantor and Hans Zassenhaus in 1981.

It is arguably the dominant algorithm for solving the problem, having replaced the earlier Berlekamp's algorithm of 1967. It is currently implemented in many computer algebra systems.